研发背景
    PERL电池是发射结钝化背面局部扩散电池(PassivatedEmitterRearLocally-diffused),其结构特点是背面局部接触处重掺杂以降低电池背面局部接触区域的接触电阻和复合速率。背面局部重掺可以通过不同的工艺方式实现,比较常用的是激光掺杂和离子注入等。另外,PERL电池根据其受光面不同,可分为单面受光型和双面受光型。单面受光型电池背面一般为全金属背电极覆盖,而双面受光型一般为丝网印刷正反面对称结构,背面可接收反射光线,结合双玻组件技术可提高3%以上的总发电量。
应用范围
1、用户太阳能电源:小型电源10-100W不等,用于边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;3-5KW家庭屋顶并网发电系统;光伏水泵:解决无电地区的深水井饮用、灌溉。
2、交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、路灯、高空障碍灯、高速公路/铁路无线电话亭、无人值守道班供电等。
3、 通讯/通信领域:太阳能无人值守微波中继站、光缆维护站、广播/通讯/寻呼电源系统;农村载波电话光伏系统、小型通信机、士兵GPS供电等。
4、石油、海洋、气象领域:石油管道和水库闸门阴极保护太阳能电源系统、石油钻井平台生活及应急电源、海洋检测设备、气象/水文观测设备等。
5、家庭灯具电源:如庭院灯、路灯、手提灯、野营灯、登山灯、垂钓灯、黑光灯、割胶灯、节能灯等。
6、光伏电站:10KW-50MW独立光伏电站、风光(柴)互补电站、各种大型停车厂充电站等。
7、太阳能建筑:将太阳能发电与建筑材料相结合,使得未来的大型建筑实现电力自给,是未来一大发展方向。
8、其他领域包括:与汽车配套:太阳能汽车/电动车、电池充电设备、汽车空调、换气扇、冷饮箱等;太阳能制氢加燃料电池的再生发电系统;海水淡化设备供电;卫星、航天器、空间太阳能电站等。
技术路线及原理
    利用PassDop技术制备的n-PERL小面积电池(4cm2),其转化效率达23.2%(Voc=699mV,Jsc=41.3mA/cm2,FF=80.5%),电池结构如图所示。基体材料为N型CZ单晶硅,正面通过离子注入形成硼掺杂p+发射结,正面采用ALD工艺沉积Al2O3钝化层钝化发射结降低表面复合速率,再用PECVD沉积SiNx形成减反膜。正面光刻工艺开槽后用蒸镀方法形成Ti/Pb/Ag金属电极,背面利用激光掺杂技术形成局部背场。其工艺特点是先在背面PECVD法生长一层磷掺杂的a-SiCx钝化层,再利用激光在熔融钝化层的同时将其中的磷元素掺杂进晶体硅形成局部重掺,最后通过PVD的方法形成Al背面电极。背面磷掺杂的a-SiCx钝化层具有很好的钝化效果,金属接触区域n++局部重掺在降低接触电阻的同时,减少了金属接触区域的复合,提升了电池的开路电压和填充因子。电池Uoc达699mV,FF达80.5%,显示了良好的表面钝化效果和接触特性。
技术特色
PERL电池具有高效率的原因在于: (1)电池正面采用“倒金字塔”,这种结构受光效果优于绒面结构,具有很低的反射率,从而提高了电池的JSC. (2)淡磷、浓磷的分区扩散。栅指电极下的浓磷扩散可以减少栅指电极接触电阻 而受光区域的淡磷扩散能满足横向电阻功耗小,且短波响应好的要求 (3)背面进行定域、小面积的硼扩散P+区。这会减少背电极的接触电阻,又增加了硼背面场,蒸铝的背电极本身又是很好的背反射器,从而进一步提高了电池的转化效率 (4)双面钝化。发射极的表面钝化降低表面态,同时减少了前表面的少子复合。而背面钝化使反向饱和电流密度下降,同时光谱响应也得到改善 但是这种电池的制造过程相当繁琐,其中涉及到好几道光刻工艺,所以不是一个低成本的生产工艺。
经济效益分析
      PassDop技术采用成熟的激光掺杂技术在形成背面局部接触窗口的同时形成局部重掺,在不额外增加工艺步骤的情况下实现了PERL电池结构,是一种非常有应用前景的N型高效电池的技术。